
Copyright ã1994 Christopher J. Kane.    Version 1.0.

Introduction to the MiscFindPanel

This document contains the following major sections:
· Incorporating the find panel into a project
· Other notes on the find panel bundle
· The SearchableText categories and string-searching functions
· Frequently Asked Questions about the MiscFindPanel

The MiscFindPanel class is designed to be a (mostly) self-contained bundle which can
be incorporated into a project with minimal effort.    Additional categories, protocols,
and functions support the bundle and add powerful features of their own.    This

product requires NeXTSTEP 3.x or higher.    It was written by Christopher J. Kane
(kane@gac.edu).    Please feel free to contact the author with any questions,
comments, bug reports (and/or fixes!), or suggestions about this bundle or the related
facilities.
Additional documentation of interest is located (under the MiscKit/Documentation
directory of the MiscKit distribution) in:

Classes/MiscFindPanel.rtf Class documentation
Classes/MiscFindPanelClass.rtf Application class category
Protocols/SearchableText.rtfd String-searching object protocol
Categories/MiscSearchText.rtf Text class category
Functions/MiscTBMK.rtf Fast string-searching functions

Incorporating the find panel into a project

Barring the need to debug the MiscFindPanel class itself (and hopefully you won't have
to do that), the find panel bundle can be compiled once and installed into a project
directory and (for the most part) forgotten.    The most difficult part of the process of
adding a find panel to your project is implementing the methods of the SearchableText
protocol.
In this version of the MiscFindPanel class, the find panel searches for a "first
conformer" (see the document MiscFindPanel.rtf) in the same places a responder is
searched for when an action message destined for the first responder is sent (for
instance, the "cut:" message from the Edit/Cut menu item).    The objects in the key
and main windows' responder chains, those windows' delegates, and the NXApp object
and its delegate are the objects that, potentially, the find panel might operate on.   
This means that, while the SearchableText protocol could be implemented by any
object, the only objects that the find panel might try to operate on are Responders of
some type: views in a window and windows themselves typically (the exceptions being
the key and main windows' delegates and NXApp's delegate, which may be objects of
any class).    Most commonly, it is a View of some sort in the main window.    For most

projects, this is not a problem; the intent in adding a find panel to the application is to
operate on a view in the main window.
There are    five simple steps to adding a find panel to your project:

1. Implement the SearchableText protocol in one of your objects.
2. Build the MiscFindPanel.bundle and install it in your project's directory.    Either:

a. On the command line: "make install INSTALLDIR=path" within the
MiscFindPanel directory, or

b. In Project Builder: load the file MiscFindPanel/PB.project and type "install
INSTALLDIR=path" in the argument text field before building.

Replace path with the path to your project's directory.
3. Copy or link the files MiscFindPanelClass.h, MiscFindPanelClass.m,

MiscFindPanel.h, and SearchableText.h into your project's directory.
4. Add the new files to your project:

a. Add MiscFindPanel.bundle to "Other Resources".

b. Add MiscFindPanelClass.m to "Other Sources".
c. Add MiscFindPanelClass.h, MiscFindPanel.h, and SearchableText.h to
"Headers".

5. In Interface Builder, add a Find menu to the Edit menu of the main menu of your
application, and enable each of the menu cells (unless you plan on enabling them
programmatically).    Using the class inspector, add the methods (findNext:,
findPrevious:, enterSelection:, jumpToSelection:, orderFrontFindPanel:) to the
FirstResponder class.    Make one connection from each of the Find menu cells to
the First Responder object in the File Window, connecting the appropriate
method.

Your application must be linked with the shared library libNeXT_s.    It probably already
is.    If you want to strip the main executable of your application, or the install process
is going to strip it for you, you need to add the line

APP_STRIP_OPTS = $(DYLD_APP_STRIP_OPTS)
to the file Makefile.postamble (creating the file if it doesn't exist).    This will cause

those symbols which might be needed by the dynamically loaded MiscFindPanel class
to not be removed from the main executable.    See the manual pages rld(3) and
strip(1) if you want to know more.
The MiscFindPanel class can also be statically linked into an application, and the
localized files added to others in a project's language directories.    In this case, the
MiscFindPanelClass category could still be used to "catch" messages and forward them
to the find panel, but some modifications would have to be made so that the code
does not try to dynamically load the MiscFindPanel class.    The MiscFindPanel code
itself should work without modification.    In this case, of course, an application could
be "fully" stripped.

Other notes on the find panel bundle

Localization

The MiscFindPanel.bundle contains translated panels and strings for the languages:
English, French, German, Italian, Spanish, and Swedish.    If you are not supporting
some or all of these languages in your project, you will want to remove the appropriate
.lproj directory(s) in the MiscFindPanel.bundle, so that if, for instance, your application
does not support Spanish, a user will never see a Spanish find panel and the rest of
your application in some other language.
If you are supporting more than one language in your application, you will want the
Find menu items to be localized as well.    The following table shows possible
translations for the Find menu items.    Copying and pasting the text out of this
document may be the easiest way to get the characters with the diacriticals.

English Find Find Panel... Find Next Find Previous Enter Selection Jump to Selection
French Rechercher Panneau de recherche... Rechercher le suivant Rechercher le prÝcÝdent

Entrer la sÝlection Aller Õ la sÝlection
German Suchen Dialogfenster "Suchen" Weitersuchen (vorwÙrts) Weitersuchen (röckwÙrts)

Auswahl öbernehmen Zur Auswahl springen
Italian Trova Pannello di ricerca... Trova il seguente Trova il precedente Riporta la selezione Salta alla
selezione

Spanish Buscar Panel de bósqueda... Buscar siguiente Buscar anterior Introducir selecciín Pasar a
selecciín
Swedish Sðk Sðkpanel... Sðk nÙsta Sðk fðregÚende Kopiera markering GÚ till markering

Known bugs
· The MiscFindPanel class's internal _calcFindPanelTarget instance method assumes

that the responder chains of the key and main windows end with some responder
that has a next responder of nil (this "end of the chain" responder need not be the
windows themselves, though it is them if the windows' next responders have not
been explicitly set).    This also means that a responder chain that loops is also a bad
thing.    Under "normal" usage, this bug will not manifest itself.

Possible future enhancements
· The ability to add one or more accessory views
· Fix first conformer searching so that possible loops are avoided
· Implement a generic SearchMatrix category (unless someone beats me to it)

· Add message support for the different SearchErr values of SearchableText

Miscellanea
Help is not provided for the find panel and its controls.    Under NeXTSTEP 3.x, in my
opinion, help text from a bundle is not integrated well into the NXHelpPanel, so I've
opted not to provide any.    Also, help is much more application-specific than the find
panel itself, and I also did not want to translate the help text I would have provided
into the non-English languages.    Help text similar to that contained in Edit.app for its
find panel is suitable for this one as well.
The find panel does not save its frame to the defaults database.    Simply use the
appropriate Window methods if you want this behavior, sending them to the find
panel.

The SearchableText categories and string-searching functions

To ease the incorporation of the find panel into a project, two ready-to-use string-
searching packages (MiscTBMK.[ch], regexpr.[ch]) and an implementation of the
SearchableText protocol for the Text class (MiscSearchText.[hm]) are included with the
MiscFindPanel distribution.    See the documents Categories/MiscSearchText.rtf,
Functions/MiscTBMK.rtf for additional information.

The regular expression routines
The regular expression package is by Tatu Ylonen (ylo@ngs.fi), and is compatible with
the GNU regexpr package (at the time of this package's writing).    This is the version
posted to the comp.sources.misc newsgroup, v27i023, with the patch posted to the
same newsgroup, v29i059.    In addition, some changes, marked with "(cjk)" in the
source, have been made to accomodate the use of these routines under NEXTSTEP.
The copyright and license notice for the regular expression code:

Copyright (c) 1991 Tatu Ylonen, Espoo, Finland
Permission to use, copy, modify, distribute, and sell this software
and its documentation is hereby granted without fee, provided that the
above copyright notice appears in all source code copies, the name of
Tatu Ylonen is not used to advertise products containing this software
or a derivation thereof, and all modified versions are clearly marked
as such.
This software is provided "as is" without express or implied warranty.

The header text to the two comp.sources.misc newgroup postings that contained this
package:

Submitted-by: ylo@ngs.fi (Tatu Ylonen)
Posting-number: Volume 27, Issue 23
Archive-name: regexpr/part01
Regexpr is a regular expression package.    It is free (meaning that you may do

anything you want with it); the original motivation for writing it was not being
able to use the GNU library in a commercial application.
Some of the features include:
- fully compatible with gnu regex library (I run emacs with this library for several

weeks as a test)
- can handle arbitrary data, including binary characters
- can handle split data
- compiles and runs also on 16 bit machines (eg. MSDOS)
- does not use alloca
- fairly easy to extend and modify (easier than the gnu version anyway)
- speed comparable to that of the GNU library (searches seem a bit faster,

matches about the same and compiling a bit slower than in the gnu library)
- there are some extensions (enabled if RE_ANSI_HEX is set in syntax):

\vnn for accessing registers > 9 (useful if RE_NREGS > 10)
\xhh specifies character in hex
\a ascii 7

\b ascii 8
\f ascii 12
\n ascii 10
\r ascii 13
\t ascii 9
\v ascii 11

I have not written any documentation; see the header file and documentation
GNU Regex library in GNU Emacs distribution.
Send comments, bug fixes and suggestions to Tatu Ylonen <ylo@cs.hut.fi>.

--
Submitted-by: ylo@ngs.fi (Tatu Ylonen)
Posting-number: Volume 29, Issue 59
Archive-name: regexpr/patch01
Patch-To: regexpr: Volume 27, Issue 23
This patch contains the following changes to the regexpr module.

- Matching agains registers (the \1 construct) did not work properly (the fastmap
was computed incorrectly).

- Assert bounds in re_search_2 were too loose, and have been changed to reflect
the actual behaviour.

- The copyright notice has been clarified, but no significant changes have been
made.

The only real bug reported so far has been the problem with matching against
registers, and it is now fixed.
The patch is a context diff inside a shar.
Tatu Ylonen <ylo@cs.hut.fi>

Frequently Asked Questions about the MiscFindPanel

This section presents a number of often-asked questions and comments about
MiscFindPanel, and the related categories and files, and my answers or responses to
them.    (And a few questions and answers I made up myself.)
Thanks especially to Scott Anguish (sanguish@digifix.com), Charles C. Lloyd
(clloyd@gleap.sccsi.com), and Don Yacktman (Don_Yacktman@byu.edu) for asking or
inspiring many of these questions.
Topics:

1. The "non-standard" interface
2. Having other objects do the searching
3. The searching code is not in the bundle
4. SearchableText rather than MiscSearchableText
5. Separate bundle rather than .bproj
6. Those translations
7. Objects other than Text

Question 1: The "non-standard" interface
The find panel offers all the standard features, but doesn't present the "standard"
interface found in Edit.    Why is this?    Did you consider making the MiscFindPanel an
exact clone of    the find panel in Edit?

That's how it began, of course.    But I made a few changes:
1. The Find TextField and Replace With TextField are not lined up as in a Form.    I

didn't see any good reason why this had to be, and maximizing the "area to type in"
seemed more important.

2. The position of the message text in the Edit find panel seemed to be
arbitraryÐthere was no reason to prefer it being on the left.    But there did seem to be
a good reason to move the Replace All Scope radio buttons to the left: it associates the
matrix moreso with the Replace All button, and also reduces the amount of mouse
movement required after acting in the matrix.    Myself, the only reason I operate on
those radio buttons is that I am immediately going to Replace All.    I very briefly looked
at having the message text in the center, but that was not aesthetically pleasing, and

harder for the eye to pick out somehow.
3. The Previous and Next buttons on the German version of the Edit panel are

translated awfully (well, the translations mangle the panel).    I think my translations
are sufficient and make the panel look better.
The biggest (and most often commented on) change is #2, above.    I don't think that
the changes are significant enough to cause confusion.    I think that in the few-
hundredths-of-a-second period, as the user's eyes track horizontally across the panel,
the eye will not be tracking for an empty area of the background color, but rather for
color changes from that of the background: the square shape of the boxes, the black
text, or most likely (in my opinion), the white dot in the Replace All radio matrix.
So it seems to matter less that the Replace All matrix and friends have been left
rotated one place, than that the Replace All matrix has a similar look to the one in
Edit's find panel.    And if a developer really wants the look of the interface that Edit
has supposedly "standardized", she or he can simply modify the .nib files (though they
are not as simple as they appear).

I used this same design in an application I wrote (Schematik.app, a NeXT front-end to
MIT Scheme) two years ago, and as of now, two years and thousands of users later,
there has never been a complaint, nor even a comment, about the "non-standard" find
panel user interface.
People are highly adaptable creatures.    How many thousands of people use
NewsGrazer (as an example, sorry Jayson), with its non-standard command-key usage,
every day and live through the experience?

Question 2: Having other objects do the searching
Why not integrate the regex and searching functionality into the MiscFindPanel?

Another NeXT application developer and I, as it happens, discussed this at length.    He
thought the MiscFindPanel should also have searching functionality.    I disagreed (and
implemented it without that functionality).    There were two reasons I had:

1. I wanted a generic sort of panel.    I didn't want to complicate the developer's job
if the developer had a different regex package she or he wanted to use (for instance).   

This is the reason for having a SearchableText protocol, too.    I didn't want to leave
developers out in the cold however, so I included a good set of regex routines.

2. I wanted to follow the general NeXT paradigm for panels; and a more general
object-oriented one.    Does the SavePanel actually save the file?    Does the PrintPanel
actually do the printing? (Well, no the printer does, but in software...) Panels are
generally vehicles that users use to have actions performed, but which don't actually
do them.    (NXHelpPanel is something of a special case.)    Thus the MiscFindPanel is a
vehicle for the user to specify searching parameters, but does not do the searching.    A
Text object (for instance) is best equipped to search the text itself.

Question 3: The searching code is not in the bundle
Does the regex library get put into the bundle automatically? What about putting the
regex code in the bundle too?

This relates to question #2.    There is no point in including the regex code with the
MiscFindPanel object file, since the MiscFindPanel doesn't use it.    The Misc_TBMK
searching routines and the SearchText category do not go into the bundle for the same

reason.
This non-MiscFindPanel.bundle stuff is provided as a convenience to the developer, to
make the panel a bit easier to use.    But the decision to use it or not remains with the
developer; it is not gratuitously included in the bundle.    And it's easy enough for a
developer to add the files to a project and have them linked into the proper place.

Question 4: SearchableText rather than MiscSearchableText
I was wondering why you hadn't changed the SearchableText to have the "Misc" prefix
that nearly everything else has....

There were a few reasons...
1. I didn't like the sound of "MiscSearchableText".
2. Protocol names should be descriptive (I think) of some property of itself that an

object wants to advertise.    The "Misc", being an almost-word in itself, seemed to act
as an adverb to "Searchable", and seemed to distorted the meaning of the name.

3. Protocol names only conflict with other protocol names.    From the NEXTSTEP 3.x

developer documentation (NextDev/Concepts/ObjectiveC/3_MoreObjC/MoreObjC.rftd):
Unlike class names, protocol names don't have global visibility.    They live in their

own name space.

Only class names, function names, non-static global variables, and #defines and
typedefs in header files need to have the "Misc" prefix to avoid the majority of name
clashes.    Protocol and category name clashes are still possible, but much more
unlikely.

Question 5: Separate bundle rather than .bproj
Why is the MiscFindPanel not in a .bproj?

Well, I don't know.    Probably because I didn't originally implement it that way.    I've
used subprojects in the past, and have never been impressed.    I just wasn't inclined in
that direction.
You shouldn't need to compile the MiscFindPanel.bundle more than once (per project at

least).    Subprojects are useful if you are doing development on "subsystems".

Question 6: Those translations
Some of your translations don't seem to be correct...

Quite possibly.    Most of my translations are translations taken from NS 3.0/3.1, others
were gotten from semi-informed opinions, and the rest are "best guesses".    NeXT may
not have used the
best translations, but it seems likely that they used the most suitable one (the length
of a translation is one consideration).    And the others are probably comprehensible,
even with a mis-conjugated verb or mis-pluralized noun here and there.
I am very willing to listen to translation suggestions, and/or to work with someone on
translating the MiscFindPanel to another language.    Please e-mail me.

Question 7: Objects other than Text
How about a find panel that works with NXBrowsers or in a Matrix.    Will MiscFindPanel

handle this too?

Yes, sort of.    An object must conform to the SearchableText protocol, but if it does, the
MiscFindPanel will work with it.    I created the SearchableText protocol with Matrixs,
selection lists, and, of course, the Text class in mind.    My goal was to create a general
protocol which any object that had text it wanted to "vend" for searching or replacing
operations could implement.    For a Text-like object, this is simple.    For a Matrix, a
programmer would have to decide how to map a linear sort of text model to two/three
dimensions (depending on your interpretation of the text in a Matrix).    This is not all
that difficult either, and there is lots of documentation to explain things.    If you are
having trouble, feel free to e-mail me.
I'd be interested in implementations of the SearchableText protocol for NeXT's *Kit
classes, as well as others, to be included (with copyright notices and documentation,
as appropriate) in future releases of the MiscFindPanel package.    Please e-mail me if
you would like to contribute.

